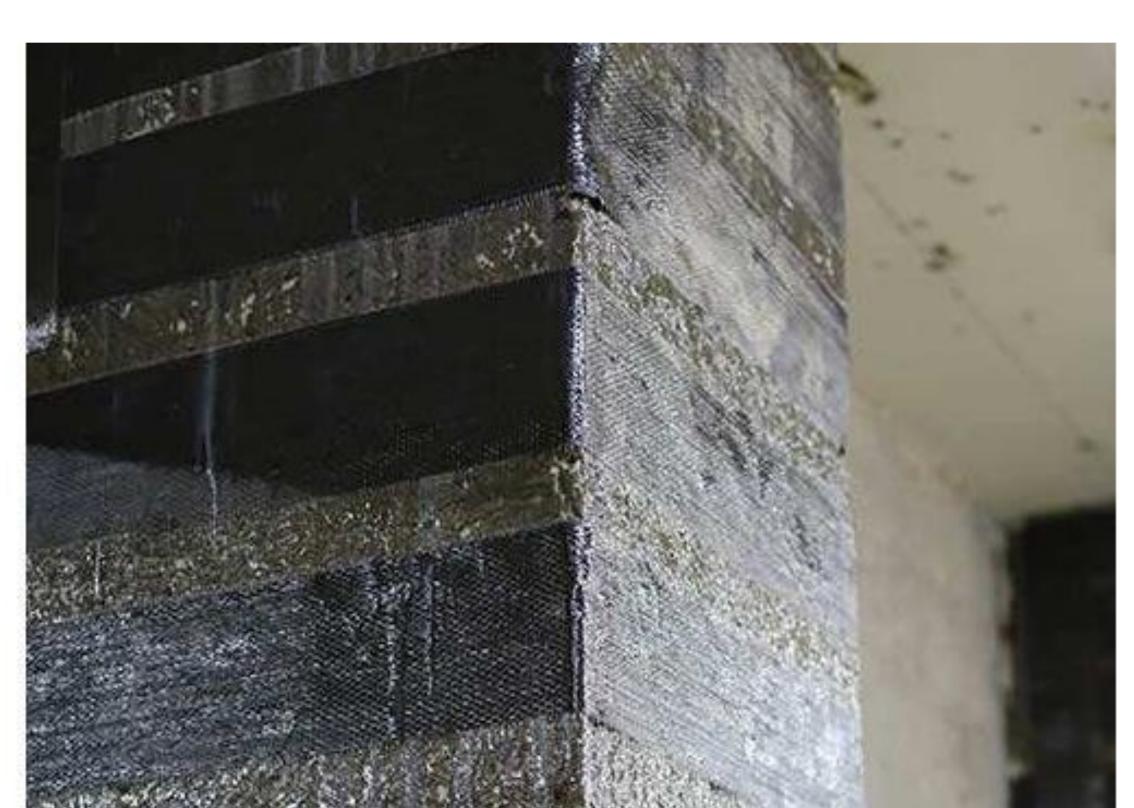
Национальный исследовательский московский государственный строительный университет (НИУ МГСУ)

Научно-исследовательский институт строительной физики российской академии архитектуры и строительных наук (НИИСФ РААСН)

Усиление конструкций здания внешним армированием из композитных материалов

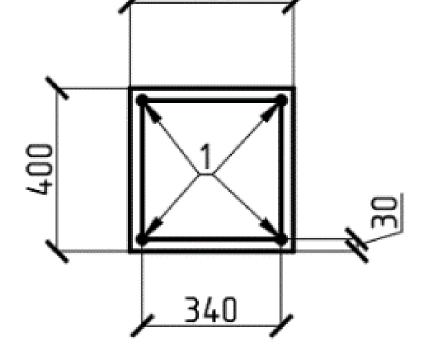

ВВЕДЕНИЕ

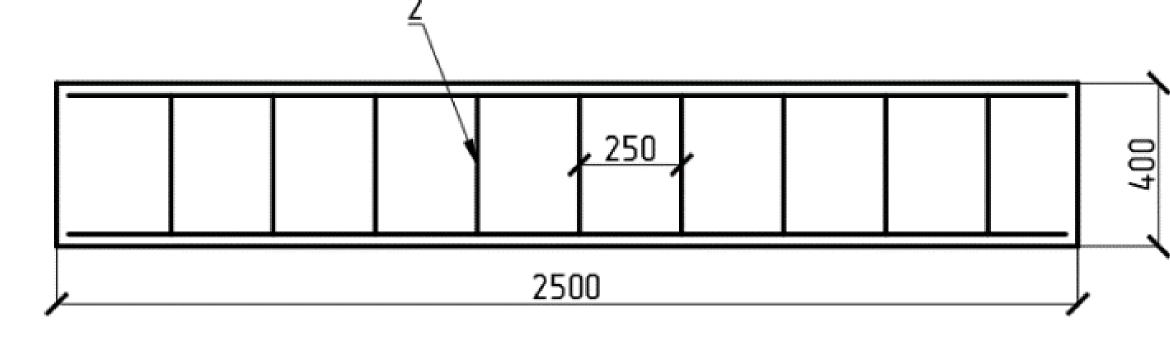
Несущие колонны используются в качестве основного элемента для восприятия сжимающих нагрузок в зданиях. Благодаря этим элементам сохраняется надежность всей конструкции. Но часто рассчитанные показатели колонн не подходят для тех задач, которые им приходится выполнять на практике. Необходимость в усилении колонн возникает, если на них появляются видимые дефекты. Обычные трещины, образование уклона или крена также следует отнести к серьезным деформациям. Еще один довод в пользу выполнения усиления колонн - это расширение площади здания. Увеличение нагрузки на эти элементы может не Любой предусмотрено первоначальным проектом. капитальный ремонт или реконструкция могут привести к снижению несущей способности колонн. Усиление композитными материалами в виде углеродных лент и полотен является одним из самых современных и надежных методов усиления конструкций.

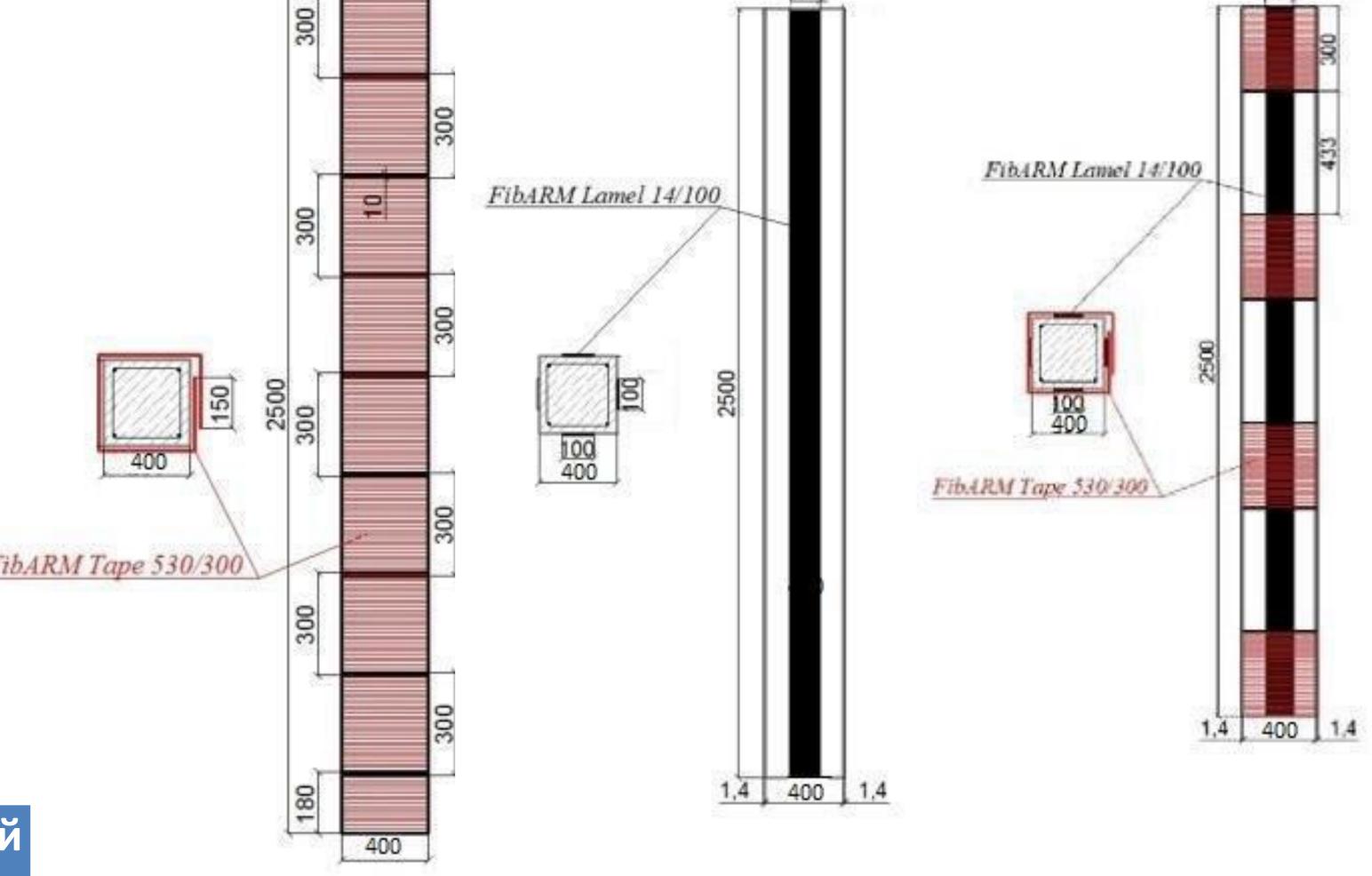
Материалы и методы

В данной работе представлены результаты испытаний железобетонных колонн при армировании полотнами на основе углеродных волокон FibARM Таре 530/300 и ламелями FibARM Lamel 14/100, а также предложен расчет бетонных колонн, армированных полотнами на основе углеродных волокон FibARM Таре 530/300. Были испытаны три группы колонн: А - неармированные колонны, В - колонны, усиленные зажимами FibARM Таре 530/300 в один слой, С - усиленные ламелями FibARM 14/100 шириной 100 мм, в то время как другой образец был усилен только ламелью, а другой был усилен как ламелью, так и зажимами. Нагрузка прикладывалась к колонне с шагом 5000 кг со скоростью 500 кг/мин. Испытания проводились при температуре + (15-22)°C на испытательной машине по схеме осевого сжатия, при этом абсолютные деформации регистрировались у основания 500 мм в середине длины колонны. Нагрузка прикладывалась к колонне с шагом 5000 кг со скоростью 500 кг/мин.

Был проведен калибровочный расчет армирования бетонных колонн полотнами на основе углеродных волокон FibARM Таре 530/300, целью которого было определение несущей способности для оценки пригодности при дальнейшей эксплуатации конструкции после проведения работ по усилению колонн. Целью проверочных расчетов является определение несущей способности для оценки пригодности к дальнейшей эксплуатации конструкции после проведения работ по усилению колонны.




Результаты


По результатам эксперимента были получены данные о несущей способности центрально сжатых бетонных колонн, армированных углеродным волокном, как при раздельном расположении полос из композитного материала по высоте конструкций, так и при их непрерывной обмотке. Анализ результатов расчетов показывает, что армирование бетонных колонн при сжатии путем намотки на них углеродных полотен привела к увеличению несущей способности на сжатие на 54% при одновременном усилении их ламелями увеличило несущую способность колонн только на 8%, и только частичное добавление обмотки к ламелям полотнами привело к увеличению сжимающей способности на 35%.

Группа	Номер колонны	Разрушающа я нагрузка, кН		Средняя прочность на сжатие, МПа	Увеличение несущей способности колонны при сжатии, %
A	1	1274	20	10 E	0
	2	1078	17	18,5	
5 -	3	1666	27	20 E	54
	4	1862	30	28,5	
C	5	1274	20	20	8
	6	1568	25	25	35

Тип композитного материала	Толщина, мм	Предел прочности при растяжении, МПа	Модуль упругости при растяжении, МПа	Ширина ленты, мм
FibARM Tape 530/300	0,166	4900	230000	300
4	00	2		

Обсуждения и выводы

По результатам исследований были получены экспериментальные прочности и деформативности изгибаемых железобетонных колонн, армированных материалом на основе углерода, экспериментально доказано влияние различных схем железобетонных изгибаемых использованием материалов из углеродного волокна, получена и проанализирована разрушающая способность бетонных колонн, углеродным волокном. Учитывая опыт за рубежом, технологии можно с уверенностью композитные материалы, сказать, армированные волокнами выйдет на лидирующие позиции в России в ближайшем будущем. С каждым годом ученые проводят все больше и больше испытаний, подтверждающих неоспоримые преимущества этой системы армирования в строительстве.

